The website features runtime and memory benchmarks of the mlr3 base package now.
mlr3 - Runtime and Memory
Scope
This report analyzes the runtime and memory usage of the mlr3 package across different versions. It focuses on the resample() and benchmark() functions used for model evaluation. The benchmarks vary the training time of the models, the number of resampling iterations, and the size of the dataset. Additionally, the experiments are conducted in parallel to assess the impact of parallelization on both runtime and memory usage. The overhead introduced by encapsulation is examined by comparing different encapsulation methods. Furthermore, the report evaluates the object sizes of various mlr3 objects.
Given the extensive package ecosystem of mlr3, performance bottlenecks can occur at multiple stages. This report aims to help users determine whether the runtime of their workflows falls within expected ranges. If significant runtime or memory anomalies are observed, users are encouraged to report them by opening a GitHub issue.
Benchmarks are conducted on a high-performance cluster optimized for multi-core performance rather than single-core speed. Consequently, runtimes may be faster on a local machine.
Summary of Latest mlr3 Version
The benchmarks are comprehensive; therefore, we present a summary of the results for the latest mlr3 version. The overhead introduced by resample() and benchmark() should always be considered relative to the training time of the models. For models with longer training times, such as 100 ms and 1 second, the overhead is minimal. However, for models with a training time of 10 ms, the overhead approximately doubles the runtime. In cases where the training time is only 1 ms, the overhead results in the runtime being ten times larger than the actual model training time. Running an empty R session consumes 131 MB of memory. Resampling with 10 iterations consumes approximately 164 MB, increasing to around 225 MB when performing 1,000 resampling iterations. Memory usage for benchmarking is comparable to that of resampling.
mlr3 utilizes the future package to enable parallelization over resampling iterations. However, running resample() and benchmark() in parallel introduces overhead due to the initiation of worker processes. Therefore, we compare the runtime of parallel execution with that of sequential execution. For models with a 1-second training time, using resample() and benchmark() in parallel reduces runtime. For models with a 100 ms training time, parallel execution is only advantageous when performing 100 or 1,000 resampling iterations. For models with 10 ms and 1 ms training times, sequential execution only becomes slower than parallel execution when running 1,000 resampling iterations. Memory usage increases significantly with the number of cores since each core initiates a separate R session. Utilizing 10 cores results in a total memory usage of around 1.2 GB.
Encapsulation ensures that signaled conditions (e.g., messages, warnings and errors) are intercepted and that all conditions raised during the training or prediction step are logged into the learner without interrupting the program flow. The encapsulation of the $train() method introduces a runtime overhead of ~1 seconds per model training when using the callr package. In contrast, the encapsulation of the evaluate package adds negligible overhead to the runtime.
When saving and loading mlr3 objects, their size can become significantly larger than expected. This issue is inherent to R6 objects due to data duplication during serialization and deserialization. The latest versions of mlr3 have implemented various strategies to mitigate this problem, substantially reducing the previously observed large increases in object size.
Resampling
The runtime and memory usage of the resample() function is measured for different mlr3 versions. The models are trained for different amounts of time (1 ms, 10 ms, 100 ms, and 1000 ms) on the spam dataset with 1000 and 10,000 instances. The resampling iterations (evals) are set to 1000, 100, and 10.
Runtime and memory usage of resample() with models trained for 1000 ms depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1000
10
10
12
11
1.2
175
203
0.14.2
0.10.0
1000
10
10
12
11
1.2
174
203
0.15.0
0.11.1
1000
10
10
13
11
1.3
174
203
0.16.0
0.11.1
1000
10
10
11
11
1.1
174
203
0.17.0
0.11.1
1000
10
10
10
10
1.0
175
203
0.17.1
0.11.1
1000
10
10
10
10
1.0
175
203
0.17.2
0.11.1
1000
10
10
10
10
1.0
175
203
0.18.0
0.11.1
1000
10
10
10
10
1.0
175
203
0.19.0
0.11.1
1000
10
10
10
10
1.0
175
203
0.20.0
1.0.0
1000
10
10
10
10
1.0
167
193
0.20.1
1.0.1
1000
10
10
10
10
1.0
165
198
0.20.2
1.0.1
1000
10
10
10
10
1.0
165
197
0.21.0
1.0.1
1000
10
10
10
10
1.0
164
202
0.21.1
1.0.1
1000
10
10
10
10
1.0
164
202
0.22.0
1.0.1
1000
10
10
10
10
1.0
163
200
0.22.1
1.0.1
1000
10
10
10
10
1.0
163
200
100 Resampling Iterations
0.13.4
0.9.0
1000
100
100
110
100
1.1
222
203
0.14.2
0.10.0
1000
100
100
110
110
1.1
224
206
0.15.0
0.11.1
1000
100
100
110
110
1.1
224
205
0.16.0
0.11.1
1000
100
100
110
100
1.1
224
206
0.17.0
0.11.1
1000
100
100
100
100
1.0
247
209
0.17.1
0.11.1
1000
100
100
100
100
1.0
207
203
0.17.2
0.11.1
1000
100
100
100
100
1.0
207
203
0.18.0
0.11.1
1000
100
100
100
100
1.0
207
203
0.19.0
0.11.1
1000
100
100
100
100
1.0
207
203
0.20.0
1.0.0
1000
100
100
100
100
1.0
241
226
0.20.1
1.0.1
1000
100
100
100
100
1.0
206
200
0.20.2
1.0.1
1000
100
100
100
100
1.0
206
200
0.21.0
1.0.1
1000
100
100
100
100
1.0
182
202
0.21.1
1.0.1
1000
100
100
100
100
1.0
182
202
0.22.0
1.0.1
1000
100
100
100
100
1.0
179
206
0.22.1
1.0.1
1000
100
100
100
100
1.0
179
204
Model Time 100 ms
Runtime and memory usage of resample() with models trained for 100 ms depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
100
10
1
1.9
3.6
1.9
175
203
0.14.2
0.10.0
100
10
1
3.4
2.9
3.4
174
203
0.15.0
0.11.1
100
10
1
3.1
2.9
3.1
174
203
0.16.0
0.11.1
100
10
1
1.9
2.7
1.9
174
203
0.17.0
0.11.1
100
10
1
1.1
1.1
1.1
175
203
0.17.1
0.11.1
100
10
1
1.1
1.1
1.1
175
203
0.17.2
0.11.1
100
10
1
1.1
1.1
1.1
175
203
0.18.0
0.11.1
100
10
1
1.1
1.1
1.1
175
203
0.19.0
0.11.1
100
10
1
1.1
1.1
1.1
175
203
0.20.0
1.0.0
100
10
1
1.1
1.1
1.1
167
193
0.20.1
1.0.1
100
10
1
1.1
1.1
1.1
165
198
0.20.2
1.0.1
100
10
1
1.1
1.1
1.1
165
197
0.21.0
1.0.1
100
10
1
1.1
1.1
1.1
164
202
0.21.1
1.0.1
100
10
1
1.1
1.1
1.1
164
202
0.22.0
1.0.1
100
10
1
1.1
1.1
1.1
163
200
0.22.1
1.0.1
100
10
1
1.1
1.1
1.1
163
200
100 Resampling Iterations
0.13.4
0.9.0
100
100
10
31
24
3.1
222
203
0.14.2
0.10.0
100
100
10
16
27
1.6
224
206
0.15.0
0.11.1
100
100
10
20
34
2.0
224
205
0.16.0
0.11.1
100
100
10
20
47
2.0
224
206
0.17.0
0.11.1
100
100
10
11
12
1.1
247
209
0.17.1
0.11.1
100
100
10
11
11
1.1
207
203
0.17.2
0.11.1
100
100
10
11
11
1.1
207
203
0.18.0
0.11.1
100
100
10
11
11
1.1
207
203
0.19.0
0.11.1
100
100
10
11
11
1.1
207
203
0.20.0
1.0.0
100
100
10
11
11
1.1
241
226
0.20.1
1.0.1
100
100
10
11
11
1.1
206
200
0.20.2
1.0.1
100
100
10
11
11
1.1
206
200
0.21.0
1.0.1
100
100
10
11
11
1.1
182
202
0.21.1
1.0.1
100
100
10
11
11
1.1
182
202
0.22.0
1.0.1
100
100
10
11
11
1.1
179
206
0.22.1
1.0.1
100
100
10
11
11
1.1
179
204
1000 Resampling Iterations
0.13.4
0.9.0
100
1000
100
150
170
1.5
343
625
0.14.2
0.10.0
100
1000
100
140
170
1.4
315
680
0.15.0
0.11.1
100
1000
100
150
180
1.5
350
613
0.16.0
0.11.1
100
1000
100
130
160
1.3
316
564
0.17.0
0.11.1
100
1000
100
110
140
1.1
342
574
0.17.1
0.11.1
100
1000
100
110
110
1.1
266
406
0.17.2
0.11.1
100
1000
100
110
110
1.1
266
405
0.18.0
0.11.1
100
1000
100
110
110
1.1
267
408
0.19.0
0.11.1
100
1000
100
110
110
1.1
266
396
0.20.0
1.0.0
100
1000
100
110
110
1.1
312
437
0.20.1
1.0.1
100
1000
100
110
110
1.1
267
385
0.20.2
1.0.1
100
1000
100
110
110
1.1
267
385
0.21.0
1.0.1
100
1000
100
110
110
1.1
225
355
0.21.1
1.0.1
100
1000
100
110
110
1.1
225
355
0.22.0
1.0.1
100
1000
100
110
110
1.1
225
381
0.22.1
1.0.1
100
1000
100
110
110
1.1
225
382
Model Time 10 ms
Runtime and memory usage of resample() with models trained for 10 ms depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
10
10
0.1
1.2
0.91
12
175
203
0.14.2
0.10.0
10
10
0.1
1.2
0.76
12
174
203
0.15.0
0.11.1
10
10
0.1
1.8
1.4
18
174
203
0.16.0
0.11.1
10
10
0.1
1.2
1.1
12
174
203
0.17.0
0.11.1
10
10
0.1
0.19
0.21
1.9
175
203
0.17.1
0.11.1
10
10
0.1
0.19
0.21
1.9
175
203
0.17.2
0.11.1
10
10
0.1
0.19
0.21
1.9
175
203
0.18.0
0.11.1
10
10
0.1
0.19
0.21
1.9
175
203
0.19.0
0.11.1
10
10
0.1
0.19
0.21
1.9
175
203
0.20.0
1.0.0
10
10
0.1
0.22
0.25
2.2
167
193
0.20.1
1.0.1
10
10
0.1
0.19
0.21
1.9
165
198
0.20.2
1.0.1
10
10
0.1
0.19
0.21
1.9
165
197
0.21.0
1.0.1
10
10
0.1
0.18
0.20
1.8
164
202
0.21.1
1.0.1
10
10
0.1
0.18
0.21
1.8
164
202
0.22.0
1.0.1
10
10
0.1
0.19
0.20
1.9
163
200
0.22.1
1.0.1
10
10
0.1
0.18
0.20
1.8
163
200
100 Resampling Iterations
0.13.4
0.9.0
10
100
1.0
13
12
13
222
203
0.14.2
0.10.0
10
100
1.0
8.8
9.6
8.8
224
206
0.15.0
0.11.1
10
100
1.0
19
9.2
19
224
205
0.16.0
0.11.1
10
100
1.0
12
10
12
224
206
0.17.0
0.11.1
10
100
1.0
1.9
2.4
1.9
247
209
0.17.1
0.11.1
10
100
1.0
1.8
2.1
1.8
207
203
0.17.2
0.11.1
10
100
1.0
1.8
2.1
1.8
207
203
0.18.0
0.11.1
10
100
1.0
1.8
2.0
1.8
207
203
0.19.0
0.11.1
10
100
1.0
1.8
2.0
1.8
207
203
0.20.0
1.0.0
10
100
1.0
2.2
2.4
2.2
241
226
0.20.1
1.0.1
10
100
1.0
1.8
2.1
1.8
206
200
0.20.2
1.0.1
10
100
1.0
1.8
2.0
1.8
206
200
0.21.0
1.0.1
10
100
1.0
1.7
2.0
1.7
182
202
0.21.1
1.0.1
10
100
1.0
1.8
2.0
1.8
182
202
0.22.0
1.0.1
10
100
1.0
1.7
2.0
1.7
179
206
0.22.1
1.0.1
10
100
1.0
1.8
2.0
1.8
179
204
1000 Resampling Iterations
0.13.4
0.9.0
10
1000
10.0
95
170
9.5
343
625
0.14.2
0.10.0
10
1000
10.0
86
120
8.6
315
680
0.15.0
0.11.1
10
1000
10.0
140
150
14
350
613
0.16.0
0.11.1
10
1000
10.0
110
140
11
316
564
0.17.0
0.11.1
10
1000
10.0
22
54
2.2
342
574
0.17.1
0.11.1
10
1000
10.0
18
20
1.8
266
406
0.17.2
0.11.1
10
1000
10.0
18
20
1.8
266
405
0.18.0
0.11.1
10
1000
10.0
18
20
1.8
267
408
0.19.0
0.11.1
10
1000
10.0
18
20
1.8
266
396
0.20.0
1.0.0
10
1000
10.0
22
24
2.2
312
437
0.20.1
1.0.1
10
1000
10.0
18
20
1.8
267
385
0.20.2
1.0.1
10
1000
10.0
18
20
1.8
267
385
0.21.0
1.0.1
10
1000
10.0
18
19
1.8
225
355
0.21.1
1.0.1
10
1000
10.0
18
19
1.8
225
355
0.22.0
1.0.1
10
1000
10.0
18
19
1.8
225
381
0.22.1
1.0.1
10
1000
10.0
17
19
1.7
225
382
Model Time 1 ms
Runtime and memory usage of resample() with models trained for 1 ms depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1
10
0.01
0.89
1.3
89
175
203
0.14.2
0.10.0
1
10
0.01
1.3
1.3
130
174
203
0.15.0
0.11.1
1
10
0.01
1.4
1.9
140
174
203
0.16.0
0.11.1
1
10
0.01
1.3
1.3
130
174
203
0.17.0
0.11.1
1
10
0.01
0.11
0.13
11
175
203
0.17.1
0.11.1
1
10
0.01
0.10
0.13
10
175
203
0.17.2
0.11.1
1
10
0.01
0.098
0.13
9.8
175
203
0.18.0
0.11.1
1
10
0.01
0.10
0.13
10
175
203
0.19.0
0.11.1
1
10
0.01
0.11
0.12
11
175
203
0.20.0
1.0.0
1
10
0.01
0.14
0.16
14
167
193
0.20.1
1.0.1
1
10
0.01
0.10
0.13
10
165
198
0.20.2
1.0.1
1
10
0.01
0.10
0.13
10
165
197
0.21.0
1.0.1
1
10
0.01
0.093
0.12
9.3
164
202
0.21.1
1.0.1
1
10
0.01
0.087
0.12
8.7
164
202
0.22.0
1.0.1
1
10
0.01
0.085
0.11
8.5
163
200
0.22.1
1.0.1
1
10
0.01
0.084
0.11
8.4
163
200
100 Resampling Iterations
0.13.4
0.9.0
1
100
0.10
10
13
100
222
203
0.14.2
0.10.0
1
100
0.10
12
15
120
224
206
0.15.0
0.11.1
1
100
0.10
19
17
190
224
205
0.16.0
0.11.1
1
100
0.10
11
9.5
110
224
206
0.17.0
0.11.1
1
100
0.10
0.97
1.6
9.7
247
209
0.17.1
0.11.1
1
100
0.10
0.93
1.2
9.3
207
203
0.17.2
0.11.1
1
100
0.10
0.94
1.2
9.4
207
203
0.18.0
0.11.1
1
100
0.10
0.90
1.2
9.0
207
203
0.19.0
0.11.1
1
100
0.10
0.90
1.2
9.0
207
203
0.20.0
1.0.0
1
100
0.10
1.3
1.5
13
241
226
0.20.1
1.0.1
1
100
0.10
0.92
1.2
9.2
206
200
0.20.2
1.0.1
1
100
0.10
0.91
1.2
9.1
206
200
0.21.0
1.0.1
1
100
0.10
0.89
1.1
8.9
182
202
0.21.1
1.0.1
1
100
0.10
0.87
1.1
8.7
182
202
0.22.0
1.0.1
1
100
0.10
0.81
0.96
8.1
179
206
0.22.1
1.0.1
1
100
0.10
0.84
0.97
8.4
179
204
1000 Resampling Iterations
0.13.4
0.9.0
1
1000
1.00
110
160
110
343
625
0.14.2
0.10.0
1
1000
1.00
130
110
130
315
680
0.15.0
0.11.1
1
1000
1.00
180
150
180
350
613
0.16.0
0.11.1
1
1000
1.00
87
120
87
316
564
0.17.0
0.11.1
1
1000
1.00
14
47
14
342
574
0.17.1
0.11.1
1
1000
1.00
9.7
12
9.7
266
406
0.17.2
0.11.1
1
1000
1.00
9.7
12
9.7
266
405
0.18.0
0.11.1
1
1000
1.00
9.5
12
9.5
267
408
0.19.0
0.11.1
1
1000
1.00
9.5
12
9.5
266
396
0.20.0
1.0.0
1
1000
1.00
13
16
13
312
437
0.20.1
1.0.1
1
1000
1.00
9.2
11
9.2
267
385
0.20.2
1.0.1
1
1000
1.00
9.2
11
9.2
267
385
0.21.0
1.0.1
1
1000
1.00
8.8
10
8.8
225
355
0.21.1
1.0.1
1
1000
1.00
8.6
9.8
8.6
225
355
0.22.0
1.0.1
1
1000
1.00
8.4
9.9
8.4
225
381
0.22.1
1.0.1
1
1000
1.00
8.4
10
8.4
225
382
Memory
Benchmark
The runtime and memory usage of the benchmark() function is measured for different mlr3 versions. The models are trained for different amounts of time (1 ms, 10 ms, 100 ms, and 1000 ms) on the spam dataset with 1000 and 10,000 instances. The resampling iterations (evals) are set to 1000, 100, and 10.
Runtime and memory usage of benchmark() with models trained for 1000 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1000
10
10
11
11
1.1
170
204
0.14.2
0.10.0
1000
10
10
18
16
1.8
170
204
0.15.0
0.11.1
1000
10
10
11
12
1.1
170
204
0.16.0
0.11.1
1000
10
10
12
12
1.2
170
204
0.17.0
0.11.1
1000
10
10
10
10
1.0
171
204
0.17.1
0.11.1
1000
10
10
10
10
1.0
171
204
0.17.2
0.11.1
1000
10
10
10
10
1.0
171
204
0.18.0
0.11.1
1000
10
10
10
10
1.0
171
204
0.19.0
0.11.1
1000
10
10
10
10
1.0
171
204
0.20.0
1.0.0
1000
10
10
10
10
1.0
168
194
0.20.1
1.0.1
1000
10
10
10
10
1.0
167
199
0.20.2
1.0.1
1000
10
10
10
10
1.0
167
199
0.21.0
1.0.1
1000
10
10
10
10
1.0
166
202
0.21.1
1.0.1
1000
10
10
10
10
1.0
166
202
100 Resampling Iterations
0.13.4
0.9.0
1000
100
100
130
120
1.3
225
202
0.14.2
0.10.0
1000
100
100
150
120
1.5
225
203
0.15.0
0.11.1
1000
100
100
120
120
1.2
225
214
0.16.0
0.11.1
1000
100
100
120
120
1.2
225
215
0.17.0
0.11.1
1000
100
100
100
100
1.0
224
202
0.17.1
0.11.1
1000
100
100
100
100
1.0
209
204
0.17.2
0.11.1
1000
100
100
100
100
1.0
209
204
0.18.0
0.11.1
1000
100
100
100
100
1.0
209
204
0.19.0
0.11.1
1000
100
100
100
100
1.0
209
204
0.20.0
1.0.0
1000
100
100
100
100
1.0
242
206
0.20.1
1.0.1
1000
100
100
100
100
1.0
205
200
0.20.2
1.0.1
1000
100
100
100
100
1.0
205
201
0.21.0
1.0.1
1000
100
100
100
100
1.0
183
202
0.21.1
1.0.1
1000
100
100
100
100
1.0
183
202
Model Time 100 ms
Runtime and memory usage of benchmark() with models trained for 100 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
100
10
1
3.8
3.9
3.8
170
204
0.14.2
0.10.0
100
10
1
7.4
6.5
7.4
170
204
0.15.0
0.11.1
100
10
1
4.8
3.3
4.8
170
204
0.16.0
0.11.1
100
10
1
2.0
3.3
2.0
170
204
0.17.0
0.11.1
100
10
1
1.1
1.1
1.1
171
204
0.17.1
0.11.1
100
10
1
1.1
1.1
1.1
171
204
0.17.2
0.11.1
100
10
1
1.1
1.1
1.1
171
204
0.18.0
0.11.1
100
10
1
1.1
1.1
1.1
171
204
0.19.0
0.11.1
100
10
1
1.1
1.1
1.1
171
204
0.20.0
1.0.0
100
10
1
1.1
1.1
1.1
168
194
0.20.1
1.0.1
100
10
1
1.1
1.1
1.1
167
199
0.20.2
1.0.1
100
10
1
1.1
1.1
1.1
167
199
0.21.0
1.0.1
100
10
1
1.1
1.1
1.1
166
202
0.21.1
1.0.1
100
10
1
1.1
1.1
1.1
166
202
100 Resampling Iterations
0.13.4
0.9.0
100
100
10
42
30
4.2
225
202
0.14.2
0.10.0
100
100
10
75
44
7.5
225
203
0.15.0
0.11.1
100
100
10
48
28
4.8
225
214
0.16.0
0.11.1
100
100
10
45
37
4.5
225
215
0.17.0
0.11.1
100
100
10
11
11
1.1
224
202
0.17.1
0.11.1
100
100
10
11
11
1.1
209
204
0.17.2
0.11.1
100
100
10
11
11
1.1
209
204
0.18.0
0.11.1
100
100
10
11
11
1.1
209
204
0.19.0
0.11.1
100
100
10
11
11
1.1
209
204
0.20.0
1.0.0
100
100
10
11
11
1.1
242
206
0.20.1
1.0.1
100
100
10
11
11
1.1
205
200
0.20.2
1.0.1
100
100
10
11
11
1.1
205
201
0.21.0
1.0.1
100
100
10
11
11
1.1
183
202
0.21.1
1.0.1
100
100
10
11
11
1.1
183
202
1000 Resampling Iterations
0.13.4
0.9.0
100
1000
100
230
220
2.3
322
425
0.14.2
0.10.0
100
1000
100
250
200
2.5
316
422
0.15.0
0.11.1
100
1000
100
210
250
2.1
325
457
0.16.0
0.11.1
100
1000
100
210
160
2.1
313
463
0.17.0
0.11.1
100
1000
100
110
120
1.1
293
388
0.17.1
0.11.1
100
1000
100
110
110
1.1
268
306
0.17.2
0.11.1
100
1000
100
110
110
1.1
268
306
0.18.0
0.11.1
100
1000
100
110
110
1.1
269
305
0.19.0
0.11.1
100
1000
100
110
110
1.1
269
311
0.20.0
1.0.0
100
1000
100
110
110
1.1
310
339
0.20.1
1.0.1
100
1000
100
110
110
1.1
265
300
0.20.2
1.0.1
100
1000
100
110
110
1.1
265
305
0.21.0
1.0.1
100
1000
100
110
110
1.1
222
281
0.21.1
1.0.1
100
1000
100
110
110
1.1
222
281
Model Time 10 ms
Runtime and memory usage of benchmark() with models trained for 10 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
10
10
0.1
1.7
1.2
17
170
204
0.14.2
0.10.0
10
10
0.1
2.1
1.8
21
170
204
0.15.0
0.11.1
10
10
0.1
1.9
2.4
19
170
204
0.16.0
0.11.1
10
10
0.1
1.1
1.4
11
170
204
0.17.0
0.11.1
10
10
0.1
0.20
0.21
2.0
171
204
0.17.1
0.11.1
10
10
0.1
0.19
0.21
1.9
171
204
0.17.2
0.11.1
10
10
0.1
0.19
0.21
1.9
171
204
0.18.0
0.11.1
10
10
0.1
0.19
0.21
1.9
171
204
0.19.0
0.11.1
10
10
0.1
0.19
0.21
1.9
171
204
0.20.0
1.0.0
10
10
0.1
0.23
0.25
2.3
168
194
0.20.1
1.0.1
10
10
0.1
0.19
0.21
1.9
167
199
0.20.2
1.0.1
10
10
0.1
0.19
0.21
1.9
167
199
0.21.0
1.0.1
10
10
0.1
0.19
0.21
1.9
166
202
0.21.1
1.0.1
10
10
0.1
0.19
0.21
1.9
166
202
100 Resampling Iterations
0.13.4
0.9.0
10
100
1.0
15
11
15
225
202
0.14.2
0.10.0
10
100
1.0
20
20
20
225
203
0.15.0
0.11.1
10
100
1.0
22
24
22
225
214
0.16.0
0.11.1
10
100
1.0
22
16
22
225
215
0.17.0
0.11.1
10
100
1.0
1.8
2.1
1.8
224
202
0.17.1
0.11.1
10
100
1.0
1.8
2.0
1.8
209
204
0.17.2
0.11.1
10
100
1.0
1.8
2.0
1.8
209
204
0.18.0
0.11.1
10
100
1.0
1.8
2.0
1.8
209
204
0.19.0
0.11.1
10
100
1.0
1.8
2.0
1.8
209
204
0.20.0
1.0.0
10
100
1.0
2.2
2.3
2.2
242
206
0.20.1
1.0.1
10
100
1.0
1.8
2.0
1.8
205
200
0.20.2
1.0.1
10
100
1.0
1.8
2.0
1.8
205
201
0.21.0
1.0.1
10
100
1.0
1.8
1.9
1.8
183
202
0.21.1
1.0.1
10
100
1.0
1.7
2.0
1.7
183
202
1000 Resampling Iterations
0.13.4
0.9.0
10
1000
10.0
160
170
16
322
425
0.14.2
0.10.0
10
1000
10.0
110
170
11
316
422
0.15.0
0.11.1
10
1000
10.0
140
110
14
325
457
0.16.0
0.11.1
10
1000
10.0
150
130
15
313
463
0.17.0
0.11.1
10
1000
10.0
19
28
1.9
293
388
0.17.1
0.11.1
10
1000
10.0
18
20
1.8
268
306
0.17.2
0.11.1
10
1000
10.0
18
20
1.8
268
306
0.18.0
0.11.1
10
1000
10.0
18
20
1.8
269
305
0.19.0
0.11.1
10
1000
10.0
18
20
1.8
269
311
0.20.0
1.0.0
10
1000
10.0
22
24
2.2
310
339
0.20.1
1.0.1
10
1000
10.0
18
19
1.8
265
300
0.20.2
1.0.1
10
1000
10.0
18
20
1.8
265
305
0.21.0
1.0.1
10
1000
10.0
18
19
1.8
222
281
0.21.1
1.0.1
10
1000
10.0
18
19
1.8
222
281
Model Time 1 ms
Runtime and memory usage of benchmark() with models trained for 1 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1
10
0.01
2.1
1.4
210
170
204
0.14.2
0.10.0
1
10
0.01
1.3
1.9
130
170
204
0.15.0
0.11.1
1
10
0.01
1.9
2.8
190
170
204
0.16.0
0.11.1
1
10
0.01
1.5
2.1
150
170
204
0.17.0
0.11.1
1
10
0.01
0.11
0.13
11
171
204
0.17.1
0.11.1
1
10
0.01
0.10
0.12
10
171
204
0.17.2
0.11.1
1
10
0.01
0.10
0.13
10
171
204
0.18.0
0.11.1
1
10
0.01
0.10
0.13
10
171
204
0.19.0
0.11.1
1
10
0.01
0.10
0.13
10
171
204
0.20.0
1.0.0
1
10
0.01
0.15
0.17
15
168
194
0.20.1
1.0.1
1
10
0.01
0.10
0.13
10
167
199
0.20.2
1.0.1
1
10
0.01
0.11
0.13
11
167
199
0.21.0
1.0.1
1
10
0.01
0.10
0.12
10
166
202
0.21.1
1.0.1
1
10
0.01
0.099
0.12
9.9
166
202
100 Resampling Iterations
0.13.4
0.9.0
1
100
0.10
21
23
210
225
202
0.14.2
0.10.0
1
100
0.10
17
25
170
225
203
0.15.0
0.11.1
1
100
0.10
21
14
210
225
214
0.16.0
0.11.1
1
100
0.10
15
17
150
225
215
0.17.0
0.11.1
1
100
0.10
0.93
1.2
9.3
224
202
0.17.1
0.11.1
1
100
0.10
0.89
1.1
8.9
209
204
0.17.2
0.11.1
1
100
0.10
0.89
1.1
8.9
209
204
0.18.0
0.11.1
1
100
0.10
0.89
1.2
8.9
209
204
0.19.0
0.11.1
1
100
0.10
0.90
1.2
9.0
209
204
0.20.0
1.0.0
1
100
0.10
1.3
1.6
13
242
206
0.20.1
1.0.1
1
100
0.10
0.87
1.2
8.7
205
200
0.20.2
1.0.1
1
100
0.10
0.91
1.2
9.1
205
201
0.21.0
1.0.1
1
100
0.10
0.85
1.1
8.5
183
202
0.21.1
1.0.1
1
100
0.10
0.85
1.1
8.5
183
202
1000 Resampling Iterations
0.13.4
0.9.0
1
1000
1.00
150
210
150
322
425
0.14.2
0.10.0
1
1000
1.00
130
300
130
316
422
0.15.0
0.11.1
1
1000
1.00
260
230
260
325
457
0.16.0
0.11.1
1
1000
1.00
240
160
240
313
463
0.17.0
0.11.1
1
1000
1.00
10
19
10
293
388
0.17.1
0.11.1
1
1000
1.00
8.9
11
8.9
268
306
0.17.2
0.11.1
1
1000
1.00
8.9
11
8.9
268
306
0.18.0
0.11.1
1
1000
1.00
8.9
11
8.9
269
305
0.19.0
0.11.1
1
1000
1.00
9.1
11
9.1
269
311
0.20.0
1.0.0
1
1000
1.00
14
16
14
310
339
0.20.1
1.0.1
1
1000
1.00
9.0
11
9.0
265
300
0.20.2
1.0.1
1
1000
1.00
8.9
11
8.9
265
305
0.21.0
1.0.1
1
1000
1.00
8.7
11
8.7
222
281
0.21.1
1.0.1
1
1000
1.00
8.4
10
8.4
222
281
Resampling Parallel
The runtime and memory usage of the resample() function with future::multisession parallelization is measured for different mlr3 versions. The parallelization is conducted on 10 cores. The models are trained for different amounts of time (1 ms, 10 ms, 100 ms, and 1000 ms) on the spam dataset with 1000 and 10,000 instances. The resampling iterations (evals) are set to 1000, 100, and 10.
Runtime and memory usage of resample() with models trained for 1000 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A K values with a red background indicates that the runtime is 3 times larger than the total training time of the models. A red median runtime indicates that the parallelized version took longer the the sequential run. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1000
10
10
2.9
11
2.7
2.9
1,147
1,254
0.14.2
0.10.0
1000
10
10
2.9
18
2.7
2.9
1,157
1,260
0.15.0
0.11.1
1000
10
10
2.9
11
2.7
2.9
1,157
1,260
0.16.0
0.11.1
1000
10
10
2.9
12
2.7
2.9
1,157
1,260
0.17.0
0.11.1
1000
10
10
2.9
10
2.8
2.9
1,147
1,254
0.17.1
0.11.1
1000
10
10
2.9
10
2.7
2.9
1,147
1,249
0.17.2
0.11.1
1000
10
10
2.9
10
2.8
2.9
1,147
1,249
0.18.0
0.11.1
1000
10
10
2.9
10
2.8
2.9
1,147
1,249
0.19.0
0.11.1
1000
10
10
2.9
10
2.8
2.9
1,147
1,249
0.20.0
1.0.0
1000
10
10
2.8
10
2.9
2.8
1,137
1,219
0.20.1
1.0.1
1000
10
10
2.8
10
2.8
2.8
1,137
1,219
0.20.2
1.0.1
1000
10
10
2.8
10
2.9
2.8
1,137
1,229
0.21.0
1.0.1
1000
10
10
2.8
10
2.8
2.8
1,137
1,229
0.21.1
1.0.1
1000
10
10
2.8
10
2.8
2.8
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
1000
100
100
12
130
12
1.2
1,249
1,638
0.14.2
0.10.0
1000
100
100
12
150
12
1.2
1,249
1,638
0.15.0
0.11.1
1000
100
100
12
120
12
1.2
1,249
1,633
0.16.0
0.11.1
1000
100
100
12
120
12
1.2
1,249
1,638
0.17.0
0.11.1
1000
100
100
12
100
12
1.2
1,249
1,633
0.17.1
0.11.1
1000
100
100
12
100
12
1.2
1,229
1,638
0.17.2
0.11.1
1000
100
100
12
100
12
1.2
1,229
1,638
0.18.0
0.11.1
1000
100
100
12
100
12
1.2
1,229
1,638
0.19.0
0.11.1
1000
100
100
12
100
12
1.2
1,229
1,638
0.20.0
1.0.0
1000
100
100
12
100
12
1.2
1,229
1,649
0.20.1
1.0.1
1000
100
100
12
100
12
1.2
1,219
1,659
0.20.2
1.0.1
1000
100
100
12
100
12
1.2
1,219
1,659
0.21.0
1.0.1
1000
100
100
12
100
12
1.2
1,167
1,669
0.21.1
1.0.1
1000
100
100
12
100
12
1.2
1,167
1,669
Model Time 100 ms
Runtime and memory usage of resample() with models trained for 100 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A K values with a red background indicates that the runtime is 3 times larger than the total training time of the models. A red median runtime indicates that the parallelized version took longer the the sequential run. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
100
10
1
2.0
3.8
2.0
20
1,147
1,254
0.14.2
0.10.0
100
10
1
2.0
7.4
2.0
20
1,157
1,260
0.15.0
0.11.1
100
10
1
2.0
4.8
2.0
20
1,157
1,260
0.16.0
0.11.1
100
10
1
2.0
2.0
2.0
20
1,157
1,260
0.17.0
0.11.1
100
10
1
2.0
1.1
2.0
20
1,147
1,254
0.17.1
0.11.1
100
10
1
2.0
1.1
2.0
20
1,147
1,249
0.17.2
0.11.1
100
10
1
2.0
1.1
2.0
20
1,147
1,249
0.18.0
0.11.1
100
10
1
2.0
1.1
2.0
20
1,147
1,249
0.19.0
0.11.1
100
10
1
2.0
1.1
2.0
20
1,147
1,249
0.20.0
1.0.0
100
10
1
2.0
1.1
2.0
20
1,137
1,219
0.20.1
1.0.1
100
10
1
2.0
1.1
2.0
20
1,137
1,219
0.20.2
1.0.1
100
10
1
2.0
1.1
2.0
20
1,137
1,229
0.21.0
1.0.1
100
10
1
2.0
1.1
1.9
20
1,137
1,229
0.21.1
1.0.1
100
10
1
2.0
1.1
1.9
20
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
100
100
10
3.0
42
12
3.0
1,249
1,638
0.14.2
0.10.0
100
100
10
3.0
75
11
3.0
1,249
1,638
0.15.0
0.11.1
100
100
10
3.0
48
8.9
3.0
1,249
1,633
0.16.0
0.11.1
100
100
10
3.0
45
11
3.0
1,249
1,638
0.17.0
0.11.1
100
100
10
3.0
11
8.9
3.0
1,249
1,633
0.17.1
0.11.1
100
100
10
2.9
11
2.7
2.9
1,229
1,638
0.17.2
0.11.1
100
100
10
2.9
11
2.7
2.9
1,229
1,638
0.18.0
0.11.1
100
100
10
2.9
11
2.7
2.9
1,229
1,638
0.19.0
0.11.1
100
100
10
2.9
11
2.6
2.9
1,229
1,638
0.20.0
1.0.0
100
100
10
2.9
11
2.7
2.9
1,229
1,649
0.20.1
1.0.1
100
100
10
2.9
11
2.7
2.9
1,219
1,659
0.20.2
1.0.1
100
100
10
2.9
11
2.7
2.9
1,219
1,659
0.21.0
1.0.1
100
100
10
2.9
11
2.8
2.9
1,167
1,669
0.21.1
1.0.1
100
100
10
2.9
11
2.8
2.9
1,167
1,669
1000 Resampling Iterations
0.13.4
0.9.0
100
1000
100
18
230
260
1.8
1,751
2,330
0.14.2
0.10.0
100
1000
100
18
250
300
1.8
1,751
2,314
0.15.0
0.11.1
100
1000
100
18
210
210
1.8
1,741
2,355
0.16.0
0.11.1
100
1000
100
19
210
270
1.9
1,741
2,355
0.17.0
0.11.1
100
1000
100
17
110
210
1.7
1,751
2,324
0.17.1
0.11.1
100
1000
100
13
110
13
1.3
1,567
2,017
0.17.2
0.11.1
100
1000
100
13
110
13
1.3
1,567
2,017
0.18.0
0.11.1
100
1000
100
13
110
13
1.3
1,587
2,038
0.19.0
0.11.1
100
1000
100
13
110
13
1.3
1,567
2,017
0.20.0
1.0.0
100
1000
100
13
110
14
1.3
1,812
2,099
0.20.1
1.0.1
100
1000
100
13
110
13
1.3
1,577
2,017
0.20.2
1.0.1
100
1000
100
13
110
13
1.3
1,567
2,017
0.21.0
1.0.1
100
1000
100
13
110
13
1.3
1,362
1,956
0.21.1
1.0.1
100
1000
100
13
110
13
1.3
1,362
2,017
Model Time 10 ms
Runtime and memory usage of resample() with models trained for 10 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A K values with a red background indicates that the runtime is 3 times larger than the total training time of the models. A red median runtime indicates that the parallelized version took longer the the sequential run. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
10
10
0.1
1.9
1.7
1.9
190
1,147
1,254
0.14.2
0.10.0
10
10
0.1
2.0
2.1
1.9
200
1,157
1,260
0.15.0
0.11.1
10
10
0.1
2.0
1.9
1.9
200
1,157
1,260
0.16.0
0.11.1
10
10
0.1
2.0
1.1
1.9
200
1,157
1,260
0.17.0
0.11.1
10
10
0.1
1.9
0.20
1.9
190
1,147
1,254
0.17.1
0.11.1
10
10
0.1
1.9
0.19
1.9
190
1,147
1,249
0.17.2
0.11.1
10
10
0.1
1.9
0.19
2.0
190
1,147
1,249
0.18.0
0.11.1
10
10
0.1
1.9
0.19
1.9
190
1,147
1,249
0.19.0
0.11.1
10
10
0.1
1.9
0.19
1.9
190
1,147
1,249
0.20.0
1.0.0
10
10
0.1
1.9
0.23
1.9
190
1,137
1,219
0.20.1
1.0.1
10
10
0.1
1.9
0.19
1.9
190
1,137
1,219
0.20.2
1.0.1
10
10
0.1
1.9
0.19
1.9
190
1,137
1,229
0.21.0
1.0.1
10
10
0.1
1.9
0.19
1.9
190
1,137
1,229
0.21.1
1.0.1
10
10
0.1
1.9
0.19
1.9
190
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
10
100
1.0
2.2
15
2.4
22
1,249
1,638
0.14.2
0.10.0
10
100
1.0
2.2
20
2.4
22
1,249
1,638
0.15.0
0.11.1
10
100
1.0
2.2
22
2.9
22
1,249
1,633
0.16.0
0.11.1
10
100
1.0
2.2
22
2.5
22
1,249
1,638
0.17.0
0.11.1
10
100
1.0
2.1
1.8
2.3
21
1,249
1,633
0.17.1
0.11.1
10
100
1.0
2.0
1.8
1.8
20
1,229
1,638
0.17.2
0.11.1
10
100
1.0
2.0
1.8
1.8
20
1,229
1,638
0.18.0
0.11.1
10
100
1.0
2.0
1.8
1.8
20
1,229
1,638
0.19.0
0.11.1
10
100
1.0
2.0
1.8
1.8
20
1,229
1,638
0.20.0
1.0.0
10
100
1.0
2.1
2.2
1.8
21
1,229
1,649
0.20.1
1.0.1
10
100
1.0
2.1
1.8
1.8
21
1,219
1,659
0.20.2
1.0.1
10
100
1.0
2.1
1.8
1.8
21
1,219
1,659
0.21.0
1.0.1
10
100
1.0
2.1
1.8
1.9
21
1,167
1,669
0.21.1
1.0.1
10
100
1.0
2.1
1.7
1.9
21
1,167
1,669
1000 Resampling Iterations
0.13.4
0.9.0
10
1000
10.0
9.3
160
160
9.3
1,751
2,330
0.14.2
0.10.0
10
1000
10.0
10
110
220
10
1,751
2,314
0.15.0
0.11.1
10
1000
10.0
12
140
160
12
1,741
2,355
0.16.0
0.11.1
10
1000
10.0
11
150
200
11
1,741
2,355
0.17.0
0.11.1
10
1000
10.0
7.8
19
200
7.8
1,751
2,324
0.17.1
0.11.1
10
1000
10.0
3.9
18
4.3
3.9
1,567
2,017
0.17.2
0.11.1
10
1000
10.0
3.9
18
4.2
3.9
1,567
2,017
0.18.0
0.11.1
10
1000
10.0
3.9
18
4.2
3.9
1,587
2,038
0.19.0
0.11.1
10
1000
10.0
3.9
18
4.2
3.9
1,567
2,017
0.20.0
1.0.0
10
1000
10.0
4.2
22
4.6
4.2
1,812
2,099
0.20.1
1.0.1
10
1000
10.0
3.9
18
4.2
3.9
1,577
2,017
0.20.2
1.0.1
10
1000
10.0
3.9
18
4.3
3.9
1,567
2,017
0.21.0
1.0.1
10
1000
10.0
3.9
18
4.2
3.9
1,362
1,956
0.21.1
1.0.1
10
1000
10.0
3.9
18
4.2
3.9
1,362
2,017
Model Time 1 ms
Runtime and memory usage of resample() with models trained for 1 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A K values with a red background indicates that the runtime is 3 times larger than the total training time of the models. A red median runtime indicates that the parallelized version took longer the the sequential run. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1
10
0.01
1.9
2.1
1.9
1,900
1,147
1,254
0.14.2
0.10.0
1
10
0.01
1.9
1.3
1.9
1,900
1,157
1,260
0.15.0
0.11.1
1
10
0.01
2.0
1.9
1.9
2,000
1,157
1,260
0.16.0
0.11.1
1
10
0.01
1.9
1.5
1.9
1,900
1,157
1,260
0.17.0
0.11.1
1
10
0.01
1.9
0.11
1.9
1,900
1,147
1,254
0.17.1
0.11.1
1
10
0.01
1.9
0.10
1.9
1,900
1,147
1,249
0.17.2
0.11.1
1
10
0.01
1.9
0.10
1.9
1,900
1,147
1,249
0.18.0
0.11.1
1
10
0.01
1.9
0.10
1.9
1,900
1,147
1,249
0.19.0
0.11.1
1
10
0.01
1.9
0.10
1.9
1,900
1,147
1,249
0.20.0
1.0.0
1
10
0.01
1.9
0.15
1.9
1,900
1,137
1,219
0.20.1
1.0.1
1
10
0.01
1.9
0.10
1.9
1,900
1,137
1,219
0.20.2
1.0.1
1
10
0.01
1.9
0.11
1.9
1,900
1,137
1,229
0.21.0
1.0.1
1
10
0.01
1.9
0.10
1.9
1,900
1,137
1,229
0.21.1
1.0.1
1
10
0.01
1.9
0.099
1.9
1,900
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
1
100
0.10
2.0
21
2.2
200
1,249
1,638
0.14.2
0.10.0
1
100
0.10
2.1
17
2.2
210
1,249
1,638
0.15.0
0.11.1
1
100
0.10
2.1
21
2.2
210
1,249
1,633
0.16.0
0.11.1
1
100
0.10
2.1
15
2.2
210
1,249
1,638
0.17.0
0.11.1
1
100
0.10
2.0
0.93
2.1
200
1,249
1,633
0.17.1
0.11.1
1
100
0.10
1.9
0.89
1.7
190
1,229
1,638
0.17.2
0.11.1
1
100
0.10
1.9
0.89
1.7
190
1,229
1,638
0.18.0
0.11.1
1
100
0.10
1.9
0.89
1.7
190
1,229
1,638
0.19.0
0.11.1
1
100
0.10
1.9
0.90
1.7
190
1,229
1,638
0.20.0
1.0.0
1
100
0.10
2.0
1.3
1.7
200
1,229
1,649
0.20.1
1.0.1
1
100
0.10
2.0
0.87
1.7
200
1,219
1,659
0.20.2
1.0.1
1
100
0.10
2.0
0.91
1.7
200
1,219
1,659
0.21.0
1.0.1
1
100
0.10
2.0
0.85
1.9
200
1,167
1,669
0.21.1
1.0.1
1
100
0.10
2.0
0.85
1.8
200
1,167
1,669
1000 Resampling Iterations
0.13.4
0.9.0
1
1000
1.00
8.8
150
170
88
1,751
2,330
0.14.2
0.10.0
1
1000
1.00
15
130
130
150
1,751
2,314
0.15.0
0.11.1
1
1000
1.00
11
260
140
110
1,741
2,355
0.16.0
0.11.1
1
1000
1.00
18
240
140
180
1,741
2,355
0.17.0
0.11.1
1
1000
1.00
6.9
10
140
69
1,751
2,324
0.17.1
0.11.1
1
1000
1.00
2.9
8.9
3.3
29
1,567
2,017
0.17.2
0.11.1
1
1000
1.00
2.9
8.9
3.2
29
1,567
2,017
0.18.0
0.11.1
1
1000
1.00
2.9
8.9
3.2
29
1,587
2,038
0.19.0
0.11.1
1
1000
1.00
3.0
9.1
3.2
30
1,567
2,017
0.20.0
1.0.0
1
1000
1.00
3.3
14
3.7
33
1,812
2,099
0.20.1
1.0.1
1
1000
1.00
2.9
9.0
3.3
29
1,577
2,017
0.20.2
1.0.1
1
1000
1.00
3.0
8.9
3.4
30
1,567
2,017
0.21.0
1.0.1
1
1000
1.00
2.9
8.7
3.3
29
1,362
1,956
0.21.1
1.0.1
1
1000
1.00
2.9
8.4
3.3
29
1,362
2,017
Memory
Benchmark Parallel
The runtime and memory usage of the benchmark() function with future::multisession parallelization is measured for different mlr3 versions. The parallelization is conducted on 10 cores. The models are trained for different amounts of time (1 ms, 10 ms, 100 ms, and 1000 ms) on the spam dataset with 1000 and 10,000 instances. The resampling iterations (evals) are set to 1000, 100, and 10.
Runtime and memory usage of benchmark() with models trained for 1000 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1000
10
10
2.4
11
2.4
2.4
1,147
1,249
0.14.2
0.10.0
1000
10
10
2.4
18
2.4
2.4
1,147
1,249
0.15.0
0.11.1
1000
10
10
2.4
11
2.4
2.4
1,152
1,249
0.16.0
0.11.1
1000
10
10
2.4
12
2.4
2.4
1,147
1,249
0.17.0
0.11.1
1000
10
10
2.4
10
2.4
2.4
1,147
1,244
0.17.1
0.11.1
1000
10
10
2.4
10
2.4
2.4
1,147
1,239
0.17.2
0.11.1
1000
10
10
2.4
10
2.4
2.4
1,147
1,239
0.18.0
0.11.1
1000
10
10
2.4
10
2.4
2.4
1,147
1,239
0.19.0
0.11.1
1000
10
10
2.4
10
2.4
2.4
1,152
1,249
0.20.0
1.0.0
1000
10
10
2.4
10
2.4
2.4
1,137
1,219
0.20.1
1.0.1
1000
10
10
2.4
10
2.4
2.4
1,137
1,219
0.20.2
1.0.1
1000
10
10
2.4
10
2.4
2.4
1,137
1,229
0.21.0
1.0.1
1000
10
10
2.4
10
2.4
2.4
1,137
1,229
0.21.1
1.0.1
1000
10
10
2.4
10
2.4
2.4
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
1000
100
100
12
130
12
1.2
1,229
1,618
0.14.2
0.10.0
1000
100
100
12
150
12
1.2
1,229
1,608
0.15.0
0.11.1
1000
100
100
12
120
12
1.2
1,229
1,613
0.16.0
0.11.1
1000
100
100
12
120
12
1.2
1,229
1,608
0.17.0
0.11.1
1000
100
100
11
100
12
1.1
1,229
1,597
0.17.1
0.11.1
1000
100
100
11
100
12
1.1
1,229
1,608
0.17.2
0.11.1
1000
100
100
11
100
12
1.1
1,229
1,613
0.18.0
0.11.1
1000
100
100
11
100
12
1.1
1,229
1,608
0.19.0
0.11.1
1000
100
100
11
100
12
1.1
1,229
1,608
0.20.0
1.0.0
1000
100
100
12
100
12
1.2
1,229
1,618
0.20.1
1.0.1
1000
100
100
11
100
12
1.1
1,219
1,654
0.20.2
1.0.1
1000
100
100
11
100
12
1.1
1,219
1,659
0.21.0
1.0.1
1000
100
100
11
100
11
1.1
1,167
1,649
0.21.1
1.0.1
1000
100
100
11
100
11
1.1
1,167
1,649
Model Time 100 ms
Runtime and memory usage of benchmark() with models trained for 100 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
100
10
1
1.5
3.8
1.6
15
1,147
1,249
0.14.2
0.10.0
100
10
1
1.6
7.4
1.6
16
1,147
1,249
0.15.0
0.11.1
100
10
1
1.6
4.8
1.6
16
1,152
1,249
0.16.0
0.11.1
100
10
1
1.6
2.0
1.6
16
1,147
1,249
0.17.0
0.11.1
100
10
1
1.6
1.1
1.6
16
1,147
1,244
0.17.1
0.11.1
100
10
1
1.6
1.1
1.6
16
1,147
1,239
0.17.2
0.11.1
100
10
1
1.6
1.1
1.6
16
1,147
1,239
0.18.0
0.11.1
100
10
1
1.6
1.1
1.6
16
1,147
1,239
0.19.0
0.11.1
100
10
1
1.6
1.1
1.6
16
1,152
1,249
0.20.0
1.0.0
100
10
1
1.6
1.1
1.6
16
1,137
1,219
0.20.1
1.0.1
100
10
1
1.6
1.1
1.6
16
1,137
1,219
0.20.2
1.0.1
100
10
1
1.6
1.1
1.5
16
1,137
1,229
0.21.0
1.0.1
100
10
1
1.6
1.1
1.6
16
1,137
1,229
0.21.1
1.0.1
100
10
1
1.6
1.1
1.5
16
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
100
100
10
2.5
42
11
2.5
1,229
1,618
0.14.2
0.10.0
100
100
10
2.5
75
12
2.5
1,229
1,608
0.15.0
0.11.1
100
100
10
2.5
48
21
2.5
1,229
1,613
0.16.0
0.11.1
100
100
10
2.5
45
9.8
2.5
1,229
1,608
0.17.0
0.11.1
100
100
10
2.5
11
9.2
2.5
1,229
1,597
0.17.1
0.11.1
100
100
10
2.4
11
2.5
2.4
1,229
1,608
0.17.2
0.11.1
100
100
10
2.4
11
2.5
2.4
1,229
1,613
0.18.0
0.11.1
100
100
10
2.4
11
2.5
2.4
1,229
1,608
0.19.0
0.11.1
100
100
10
2.4
11
2.5
2.4
1,229
1,608
0.20.0
1.0.0
100
100
10
2.5
11
2.5
2.5
1,229
1,618
0.20.1
1.0.1
100
100
10
2.4
11
2.5
2.4
1,219
1,654
0.20.2
1.0.1
100
100
10
2.4
11
2.5
2.4
1,219
1,659
0.21.0
1.0.1
100
100
10
2.4
11
2.4
2.4
1,167
1,649
0.21.1
1.0.1
100
100
10
2.4
11
2.4
2.4
1,167
1,649
1000 Resampling Iterations
0.13.4
0.9.0
100
1000
100
16
230
220
1.6
1,649
2,104
0.14.2
0.10.0
100
1000
100
16
250
280
1.6
1,638
2,145
0.15.0
0.11.1
100
1000
100
16
210
280
1.6
1,638
2,089
0.16.0
0.11.1
100
1000
100
15
210
150
1.5
1,628
2,130
0.17.0
0.11.1
100
1000
100
13
110
200
1.3
1,649
2,068
0.17.1
0.11.1
100
1000
100
12
110
12
1.2
1,536
1,884
0.17.2
0.11.1
100
1000
100
12
110
12
1.2
1,536
1,884
0.18.0
0.11.1
100
1000
100
12
110
12
1.2
1,546
1,884
0.19.0
0.11.1
100
1000
100
12
110
12
1.2
1,536
1,884
0.20.0
1.0.0
100
1000
100
13
110
13
1.3
1,772
2,007
0.20.1
1.0.1
100
1000
100
12
110
12
1.2
1,536
1,874
0.20.2
1.0.1
100
1000
100
12
110
12
1.2
1,526
1,874
0.21.0
1.0.1
100
1000
100
12
110
12
1.2
1,321
1,761
0.21.1
1.0.1
100
1000
100
12
110
12
1.2
1,321
1,761
Model Time 10 ms
Runtime and memory usage of benchmark() with models trained for 10 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
10
10
0.1
1.5
1.7
1.5
150
1,147
1,249
0.14.2
0.10.0
10
10
0.1
1.5
2.1
1.5
150
1,147
1,249
0.15.0
0.11.1
10
10
0.1
1.5
1.9
1.5
150
1,152
1,249
0.16.0
0.11.1
10
10
0.1
1.5
1.1
1.5
150
1,147
1,249
0.17.0
0.11.1
10
10
0.1
1.5
0.20
1.5
150
1,147
1,244
0.17.1
0.11.1
10
10
0.1
1.5
0.19
1.5
150
1,147
1,239
0.17.2
0.11.1
10
10
0.1
1.5
0.19
1.5
150
1,147
1,239
0.18.0
0.11.1
10
10
0.1
1.5
0.19
1.5
150
1,147
1,239
0.19.0
0.11.1
10
10
0.1
1.5
0.19
1.5
150
1,152
1,249
0.20.0
1.0.0
10
10
0.1
1.5
0.23
1.5
150
1,137
1,219
0.20.1
1.0.1
10
10
0.1
1.5
0.19
1.5
150
1,137
1,219
0.20.2
1.0.1
10
10
0.1
1.5
0.19
1.5
150
1,137
1,229
0.21.0
1.0.1
10
10
0.1
1.5
0.19
1.5
150
1,137
1,229
0.21.1
1.0.1
10
10
0.1
1.5
0.19
1.5
150
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
10
100
1.0
1.6
15
7.2
16
1,229
1,618
0.14.2
0.10.0
10
100
1.0
1.7
20
5.8
17
1,229
1,608
0.15.0
0.11.1
10
100
1.0
1.6
22
3.3
16
1,229
1,613
0.16.0
0.11.1
10
100
1.0
1.6
22
5.9
16
1,229
1,608
0.17.0
0.11.1
10
100
1.0
1.6
1.8
1.8
16
1,229
1,597
0.17.1
0.11.1
10
100
1.0
1.5
1.8
1.6
15
1,229
1,608
0.17.2
0.11.1
10
100
1.0
1.5
1.8
1.6
15
1,229
1,613
0.18.0
0.11.1
10
100
1.0
1.5
1.8
1.6
15
1,229
1,608
0.19.0
0.11.1
10
100
1.0
1.5
1.8
1.6
15
1,229
1,608
0.20.0
1.0.0
10
100
1.0
1.6
2.2
1.7
16
1,229
1,618
0.20.1
1.0.1
10
100
1.0
1.5
1.8
1.6
15
1,219
1,654
0.20.2
1.0.1
10
100
1.0
1.5
1.8
1.6
15
1,219
1,659
0.21.0
1.0.1
10
100
1.0
1.5
1.8
1.6
15
1,167
1,649
0.21.1
1.0.1
10
100
1.0
1.5
1.7
1.5
15
1,167
1,649
1000 Resampling Iterations
0.13.4
0.9.0
10
1000
10.0
9.4
160
130
9.4
1,649
2,104
0.14.2
0.10.0
10
1000
10.0
11
110
110
11
1,638
2,145
0.15.0
0.11.1
10
1000
10.0
14
140
110
14
1,638
2,089
0.16.0
0.11.1
10
1000
10.0
12
150
120
12
1,628
2,130
0.17.0
0.11.1
10
1000
10.0
4.4
19
91
4.4
1,649
2,068
0.17.1
0.11.1
10
1000
10.0
3.3
18
3.4
3.3
1,536
1,884
0.17.2
0.11.1
10
1000
10.0
3.3
18
3.3
3.3
1,536
1,884
0.18.0
0.11.1
10
1000
10.0
3.3
18
3.2
3.3
1,546
1,884
0.19.0
0.11.1
10
1000
10.0
3.3
18
3.2
3.3
1,536
1,884
0.20.0
1.0.0
10
1000
10.0
3.6
22
3.6
3.6
1,772
2,007
0.20.1
1.0.1
10
1000
10.0
3.3
18
3.3
3.3
1,536
1,874
0.20.2
1.0.1
10
1000
10.0
3.3
18
3.3
3.3
1,526
1,874
0.21.0
1.0.1
10
1000
10.0
3.3
18
3.3
3.3
1,321
1,761
0.21.1
1.0.1
10
1000
10.0
3.3
18
3.3
3.3
1,321
1,761
Model Time 1 ms
Runtime and memory usage of benchmark() with models trained for 1 depending on the mlr3 version. The K factor shows how much longer the runtime is than the model training. A red background indicates that the runtime is 3 times larger than the total training time of the models. The table includes runtime and memory usage for tasks of size 1000 and 10,000.
mlr3 Version
paradox Version
Model Time [ms]
Resampling Iterations
Total Model Time [s]
Median Runtime [s]
Median Runtime Sequential [s]
Median Runtime 10,000 [s]
K
Median Memory [MB]
Median Memory 10,000 [s]
10 Resampling Iterations
0.13.4
0.9.0
1
10
0.01
1.5
2.1
1.5
1,500
1,147
1,249
0.14.2
0.10.0
1
10
0.01
1.5
1.3
1.5
1,500
1,147
1,249
0.15.0
0.11.1
1
10
0.01
1.5
1.9
1.5
1,500
1,152
1,249
0.16.0
0.11.1
1
10
0.01
1.5
1.5
1.5
1,500
1,147
1,249
0.17.0
0.11.1
1
10
0.01
1.5
0.11
1.5
1,500
1,147
1,244
0.17.1
0.11.1
1
10
0.01
1.4
0.10
1.5
1,400
1,147
1,239
0.17.2
0.11.1
1
10
0.01
1.5
0.10
1.5
1,500
1,147
1,239
0.18.0
0.11.1
1
10
0.01
1.5
0.10
1.5
1,500
1,147
1,239
0.19.0
0.11.1
1
10
0.01
1.5
0.10
1.5
1,500
1,152
1,249
0.20.0
1.0.0
1
10
0.01
1.5
0.15
1.5
1,500
1,137
1,219
0.20.1
1.0.1
1
10
0.01
1.5
0.10
1.5
1,500
1,137
1,219
0.20.2
1.0.1
1
10
0.01
1.5
0.11
1.5
1,500
1,137
1,229
0.21.0
1.0.1
1
10
0.01
1.5
0.10
1.5
1,500
1,137
1,229
0.21.1
1.0.1
1
10
0.01
1.5
0.099
1.5
1,500
1,137
1,229
100 Resampling Iterations
0.13.4
0.9.0
1
100
0.10
1.6
21
1.7
160
1,229
1,618
0.14.2
0.10.0
1
100
0.10
1.6
17
1.7
160
1,229
1,608
0.15.0
0.11.1
1
100
0.10
1.6
21
1.7
160
1,229
1,613
0.16.0
0.11.1
1
100
0.10
1.6
15
1.7
160
1,229
1,608
0.17.0
0.11.1
1
100
0.10
1.5
0.93
1.6
150
1,229
1,597
0.17.1
0.11.1
1
100
0.10
1.5
0.89
1.5
150
1,229
1,608
0.17.2
0.11.1
1
100
0.10
1.5
0.89
1.5
150
1,229
1,613
0.18.0
0.11.1
1
100
0.10
1.4
0.89
1.5
140
1,229
1,608
0.19.0
0.11.1
1
100
0.10
1.4
0.90
1.5
140
1,229
1,608
0.20.0
1.0.0
1
100
0.10
1.5
1.3
1.6
150
1,229
1,618
0.20.1
1.0.1
1
100
0.10
1.4
0.87
1.5
140
1,219
1,654
0.20.2
1.0.1
1
100
0.10
1.4
0.91
1.5
140
1,219
1,659
0.21.0
1.0.1
1
100
0.10
1.4
0.85
1.5
140
1,167
1,649
0.21.1
1.0.1
1
100
0.10
1.4
0.85
1.5
140
1,167
1,649
1000 Resampling Iterations
0.13.4
0.9.0
1
1000
1.00
9.4
150
130
94
1,649
2,104
0.14.2
0.10.0
1
1000
1.00
7.4
130
140
74
1,638
2,145
0.15.0
0.11.1
1
1000
1.00
6.8
260
130
68
1,638
2,089
0.16.0
0.11.1
1
1000
1.00
10
240
140
100
1,628
2,130
0.17.0
0.11.1
1
1000
1.00
3.4
10
58
34
1,649
2,068
0.17.1
0.11.1
1
1000
1.00
2.4
8.9
2.2
24
1,536
1,884
0.17.2
0.11.1
1
1000
1.00
2.4
8.9
2.3
24
1,536
1,884
0.18.0
0.11.1
1
1000
1.00
2.4
8.9
2.3
24
1,546
1,884
0.19.0
0.11.1
1
1000
1.00
2.4
9.1
2.3
24
1,536
1,884
0.20.0
1.0.0
1
1000
1.00
2.7
14
2.7
27
1,772
2,007
0.20.1
1.0.1
1
1000
1.00
2.4
9.0
2.3
24
1,536
1,874
0.20.2
1.0.1
1
1000
1.00
2.4
8.9
2.3
24
1,526
1,874
0.21.0
1.0.1
1
1000
1.00
2.4
8.7
2.3
24
1,321
1,761
0.21.1
1.0.1
1
1000
1.00
2.3
8.4
2.4
23
1,321
1,761
Memory
Encapsulation
The runtime and memory usage of the $train() method is measured for different encapsulation methods and mlr3 versions.
The size of different mlr3 objects is compared for different mlr3 versions. The size is measured in memory and after calling serialize() and unserialize().
Task
task =tsk("spam_1000")
Memory usage of a Task object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.52
4.6
0.59
4.7
0.14.2
0.10.0
10
0.52
4.6
0.59
4.7
0.15.0
0.11.1
10
0.52
4.6
0.59
4.7
0.16.0
0.11.1
10
0.52
4.6
0.59
4.7
0.17.0
0.11.1
10
0.52
4.6
0.59
4.7
0.17.1
0.11.1
10
0.52
4.6
0.59
4.7
0.17.2
0.11.1
10
0.52
4.6
0.59
4.7
0.18.0
0.11.1
10
0.52
4.6
0.59
4.7
0.19.0
0.11.1
10
0.52
4.6
0.59
4.7
0.20.0
1.0.0
10
0.53
4.6
0.60
4.7
0.20.1
1.0.1
10
0.53
4.6
0.60
4.7
0.20.2
1.0.1
10
0.53
4.6
0.60
4.7
0.21.0
1.0.1
10
0.53
4.6
0.60
4.7
0.21.1
1.0.1
10
0.53
4.6
0.60
4.7
100 Resampling Iterations
0.13.4
0.9.0
100
0.52
4.6
0.59
4.7
0.14.2
0.10.0
100
0.52
4.6
0.59
4.7
0.15.0
0.11.1
100
0.52
4.6
0.59
4.7
0.16.0
0.11.1
100
0.52
4.6
0.59
4.7
0.17.0
0.11.1
100
0.52
4.6
0.59
4.7
0.17.1
0.11.1
100
0.52
4.6
0.59
4.7
0.17.2
0.11.1
100
0.52
4.6
0.59
4.7
0.18.0
0.11.1
100
0.52
4.6
0.59
4.7
0.19.0
0.11.1
100
0.52
4.6
0.59
4.7
0.20.0
1.0.0
100
0.53
4.6
0.60
4.7
0.20.1
1.0.1
100
0.53
4.6
0.60
4.7
0.20.2
1.0.1
100
0.53
4.6
0.60
4.7
0.21.0
1.0.1
100
0.53
4.6
0.60
4.7
0.21.1
1.0.1
100
0.53
4.6
0.60
4.7
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.52
4.6
0.59
4.7
0.14.2
0.10.0
1000
0.52
4.6
0.59
4.7
0.15.0
0.11.1
1000
0.52
4.6
0.59
4.7
0.16.0
0.11.1
1000
0.52
4.6
0.59
4.7
0.17.0
0.11.1
1000
0.52
4.6
0.59
4.7
0.17.1
0.11.1
1000
0.52
4.6
0.59
4.7
0.17.2
0.11.1
1000
0.52
4.6
0.59
4.7
0.18.0
0.11.1
1000
0.52
4.6
0.59
4.7
0.19.0
0.11.1
1000
0.52
4.6
0.59
4.7
0.20.0
1.0.0
1000
0.53
4.6
0.60
4.7
0.20.1
1.0.1
1000
0.53
4.6
0.60
4.7
0.20.2
1.0.1
1000
0.53
4.6
0.60
4.7
0.21.0
1.0.1
1000
0.53
4.6
0.60
4.7
0.21.1
1.0.1
1000
0.53
4.6
0.60
4.7
Learner
learner =lrn("classif.rpart")
Memory usage of a lrn("classif.rpart")object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.23
0.23
0.42
0.42
0.14.2
0.10.0
10
0.23
0.23
0.42
0.42
0.15.0
0.11.1
10
0.23
0.23
0.42
0.42
0.16.0
0.11.1
10
0.23
0.23
0.42
0.42
0.17.0
0.11.1
10
0.23
0.23
0.42
0.42
0.17.1
0.11.1
10
0.23
0.23
0.42
0.42
0.17.2
0.11.1
10
0.23
0.23
0.42
0.42
0.18.0
0.11.1
10
0.23
0.23
0.42
0.42
0.19.0
0.11.1
10
0.23
0.23
0.42
0.42
0.20.0
1.0.0
10
0.081
0.081
0.12
0.12
0.20.1
1.0.1
10
0.082
0.082
0.12
0.12
0.20.2
1.0.1
10
0.082
0.082
0.12
0.12
0.21.0
1.0.1
10
0.084
0.084
0.13
0.13
0.21.1
1.0.1
10
0.084
0.084
0.13
0.13
100 Resampling Iterations
0.13.4
0.9.0
100
0.23
0.23
0.42
0.42
0.14.2
0.10.0
100
0.23
0.23
0.42
0.42
0.15.0
0.11.1
100
0.23
0.23
0.42
0.42
0.16.0
0.11.1
100
0.23
0.23
0.42
0.42
0.17.0
0.11.1
100
0.23
0.23
0.42
0.42
0.17.1
0.11.1
100
0.23
0.23
0.42
0.42
0.17.2
0.11.1
100
0.23
0.23
0.42
0.42
0.18.0
0.11.1
100
0.23
0.23
0.42
0.42
0.19.0
0.11.1
100
0.23
0.23
0.42
0.42
0.20.0
1.0.0
100
0.081
0.081
0.12
0.12
0.20.1
1.0.1
100
0.082
0.082
0.12
0.12
0.20.2
1.0.1
100
0.082
0.082
0.12
0.12
0.21.0
1.0.1
100
0.084
0.084
0.13
0.13
0.21.1
1.0.1
100
0.084
0.084
0.13
0.13
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.23
0.23
0.42
0.42
0.14.2
0.10.0
1000
0.23
0.23
0.42
0.42
0.15.0
0.11.1
1000
0.23
0.23
0.42
0.42
0.16.0
0.11.1
1000
0.23
0.23
0.42
0.42
0.17.0
0.11.1
1000
0.23
0.23
0.42
0.42
0.17.1
0.11.1
1000
0.23
0.23
0.42
0.42
0.17.2
0.11.1
1000
0.23
0.23
0.42
0.42
0.18.0
0.11.1
1000
0.23
0.23
0.42
0.42
0.19.0
0.11.1
1000
0.23
0.23
0.42
0.42
0.20.0
1.0.0
1000
0.081
0.081
0.12
0.12
0.20.1
1.0.1
1000
0.082
0.082
0.12
0.12
0.20.2
1.0.1
1000
0.082
0.082
0.12
0.12
0.21.0
1.0.1
1000
0.084
0.084
0.13
0.13
0.21.1
1.0.1
1000
0.084
0.084
0.13
0.13
learner$train(task)
Memory usage of a trained lrn("classif.rpart")object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.39
0.50
0.64
0.74
0.14.2
0.10.0
10
0.39
0.50
0.64
0.74
0.15.0
0.11.1
10
0.39
0.50
0.64
0.75
0.16.0
0.11.1
10
0.39
0.50
0.64
0.75
0.17.0
0.11.1
10
0.39
0.50
0.64
0.75
0.17.1
0.11.1
10
0.39
0.50
0.64
0.75
0.17.2
0.11.1
10
0.39
0.50
0.64
0.75
0.18.0
0.11.1
10
0.39
0.50
0.64
0.75
0.19.0
0.11.1
10
0.39
0.50
0.64
0.75
0.20.0
1.0.0
10
0.25
0.35
0.35
0.46
0.20.1
1.0.1
10
0.25
0.36
0.35
0.46
0.20.2
1.0.1
10
0.25
0.36
0.35
0.46
0.21.0
1.0.1
10
0.25
0.36
0.36
0.46
0.21.1
1.0.1
10
0.25
0.36
0.36
0.46
100 Resampling Iterations
0.13.4
0.9.0
100
0.39
0.50
0.64
0.74
0.14.2
0.10.0
100
0.39
0.50
0.64
0.74
0.15.0
0.11.1
100
0.39
0.50
0.64
0.75
0.16.0
0.11.1
100
0.39
0.50
0.64
0.75
0.17.0
0.11.1
100
0.39
0.50
0.64
0.75
0.17.1
0.11.1
100
0.39
0.50
0.64
0.75
0.17.2
0.11.1
100
0.39
0.50
0.64
0.75
0.18.0
0.11.1
100
0.39
0.50
0.64
0.75
0.19.0
0.11.1
100
0.39
0.50
0.64
0.75
0.20.0
1.0.0
100
0.25
0.35
0.35
0.46
0.20.1
1.0.1
100
0.25
0.36
0.35
0.46
0.20.2
1.0.1
100
0.25
0.36
0.35
0.46
0.21.0
1.0.1
100
0.25
0.36
0.36
0.46
0.21.1
1.0.1
100
0.25
0.36
0.36
0.46
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.39
0.50
0.64
0.74
0.14.2
0.10.0
1000
0.39
0.50
0.64
0.74
0.15.0
0.11.1
1000
0.39
0.50
0.64
0.75
0.16.0
0.11.1
1000
0.39
0.50
0.64
0.75
0.17.0
0.11.1
1000
0.39
0.50
0.64
0.75
0.17.1
0.11.1
1000
0.39
0.50
0.64
0.75
0.17.2
0.11.1
1000
0.39
0.50
0.64
0.75
0.18.0
0.11.1
1000
0.39
0.50
0.64
0.75
0.19.0
0.11.1
1000
0.39
0.50
0.64
0.75
0.20.0
1.0.0
1000
0.25
0.35
0.35
0.46
0.20.1
1.0.1
1000
0.25
0.36
0.35
0.46
0.20.2
1.0.1
1000
0.25
0.36
0.35
0.46
0.21.0
1.0.1
1000
0.25
0.36
0.36
0.46
0.21.1
1.0.1
1000
0.25
0.36
0.36
0.46
learner$model
Memory usage of a model in a lrn("classif.rpart")object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.097
0.17
0.098
0.17
0.14.2
0.10.0
10
0.097
0.17
0.098
0.17
0.15.0
0.11.1
10
0.097
0.17
0.098
0.17
0.16.0
0.11.1
10
0.097
0.17
0.098
0.17
0.17.0
0.11.1
10
0.097
0.17
0.098
0.17
0.17.1
0.11.1
10
0.097
0.17
0.098
0.17
0.17.2
0.11.1
10
0.097
0.17
0.098
0.17
0.18.0
0.11.1
10
0.097
0.17
0.098
0.17
0.19.0
0.11.1
10
0.097
0.17
0.098
0.17
0.20.0
1.0.0
10
0.097
0.17
0.098
0.17
0.20.1
1.0.1
10
0.097
0.17
0.098
0.17
0.20.2
1.0.1
10
0.097
0.17
0.098
0.17
0.21.0
1.0.1
10
0.097
0.17
0.098
0.17
0.21.1
1.0.1
10
0.097
0.17
0.098
0.17
100 Resampling Iterations
0.13.4
0.9.0
100
0.097
0.17
0.098
0.17
0.14.2
0.10.0
100
0.097
0.17
0.098
0.17
0.15.0
0.11.1
100
0.097
0.17
0.098
0.17
0.16.0
0.11.1
100
0.097
0.17
0.098
0.17
0.17.0
0.11.1
100
0.097
0.17
0.098
0.17
0.17.1
0.11.1
100
0.097
0.17
0.098
0.17
0.17.2
0.11.1
100
0.097
0.17
0.098
0.17
0.18.0
0.11.1
100
0.097
0.17
0.098
0.17
0.19.0
0.11.1
100
0.097
0.17
0.098
0.17
0.20.0
1.0.0
100
0.097
0.17
0.098
0.17
0.20.1
1.0.1
100
0.097
0.17
0.098
0.17
0.20.2
1.0.1
100
0.097
0.17
0.098
0.17
0.21.0
1.0.1
100
0.097
0.17
0.098
0.17
0.21.1
1.0.1
100
0.097
0.17
0.098
0.17
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.097
0.17
0.098
0.17
0.14.2
0.10.0
1000
0.097
0.17
0.098
0.17
0.15.0
0.11.1
1000
0.097
0.17
0.098
0.17
0.16.0
0.11.1
1000
0.097
0.17
0.098
0.17
0.17.0
0.11.1
1000
0.097
0.17
0.098
0.17
0.17.1
0.11.1
1000
0.097
0.17
0.098
0.17
0.17.2
0.11.1
1000
0.097
0.17
0.098
0.17
0.18.0
0.11.1
1000
0.097
0.17
0.098
0.17
0.19.0
0.11.1
1000
0.097
0.17
0.098
0.17
0.20.0
1.0.0
1000
0.097
0.17
0.098
0.17
0.20.1
1.0.1
1000
0.097
0.17
0.098
0.17
0.20.2
1.0.1
1000
0.097
0.17
0.098
0.17
0.21.0
1.0.1
1000
0.097
0.17
0.098
0.17
0.21.1
1.0.1
1000
0.097
0.17
0.098
0.17
learner$param_set
Memory usage of the ParamSet of a lrn("classif.rpart")object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.20
0.20
0.36
0.36
0.14.2
0.10.0
10
0.20
0.20
0.36
0.36
0.15.0
0.11.1
10
0.20
0.20
0.36
0.36
0.16.0
0.11.1
10
0.20
0.20
0.36
0.36
0.17.0
0.11.1
10
0.20
0.20
0.36
0.36
0.17.1
0.11.1
10
0.20
0.20
0.36
0.36
0.17.2
0.11.1
10
0.20
0.20
0.36
0.36
0.18.0
0.11.1
10
0.20
0.20
0.36
0.36
0.19.0
0.11.1
10
0.20
0.20
0.36
0.36
0.20.0
1.0.0
10
0.051
0.051
0.061
0.061
0.20.1
1.0.1
10
0.052
0.052
0.062
0.062
0.20.2
1.0.1
10
0.052
0.052
0.062
0.062
0.21.0
1.0.1
10
0.052
0.052
0.062
0.062
0.21.1
1.0.1
10
0.052
0.052
0.062
0.062
100 Resampling Iterations
0.13.4
0.9.0
100
0.20
0.20
0.36
0.36
0.14.2
0.10.0
100
0.20
0.20
0.36
0.36
0.15.0
0.11.1
100
0.20
0.20
0.36
0.36
0.16.0
0.11.1
100
0.20
0.20
0.36
0.36
0.17.0
0.11.1
100
0.20
0.20
0.36
0.36
0.17.1
0.11.1
100
0.20
0.20
0.36
0.36
0.17.2
0.11.1
100
0.20
0.20
0.36
0.36
0.18.0
0.11.1
100
0.20
0.20
0.36
0.36
0.19.0
0.11.1
100
0.20
0.20
0.36
0.36
0.20.0
1.0.0
100
0.051
0.051
0.061
0.061
0.20.1
1.0.1
100
0.052
0.052
0.062
0.062
0.20.2
1.0.1
100
0.052
0.052
0.062
0.062
0.21.0
1.0.1
100
0.052
0.052
0.062
0.062
0.21.1
1.0.1
100
0.052
0.052
0.062
0.062
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.20
0.20
0.36
0.36
0.14.2
0.10.0
1000
0.20
0.20
0.36
0.36
0.15.0
0.11.1
1000
0.20
0.20
0.36
0.36
0.16.0
0.11.1
1000
0.20
0.20
0.36
0.36
0.17.0
0.11.1
1000
0.20
0.20
0.36
0.36
0.17.1
0.11.1
1000
0.20
0.20
0.36
0.36
0.17.2
0.11.1
1000
0.20
0.20
0.36
0.36
0.18.0
0.11.1
1000
0.20
0.20
0.36
0.36
0.19.0
0.11.1
1000
0.20
0.20
0.36
0.36
0.20.0
1.0.0
1000
0.051
0.051
0.061
0.061
0.20.1
1.0.1
1000
0.052
0.052
0.062
0.062
0.20.2
1.0.1
1000
0.052
0.052
0.062
0.062
0.21.0
1.0.1
1000
0.052
0.052
0.062
0.062
0.21.1
1.0.1
1000
0.052
0.052
0.062
0.062
Prediction
pred = learner$predict(task)
lobstr::obj_size() seems to misreport the size of pred$data$response. Thus the objects size appears smaller after unserializing.
Memory usage of a Prediction object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.092
0.78
0.034
0.14
0.14.2
0.10.0
10
0.092
0.78
0.034
0.14
0.15.0
0.11.1
10
0.092
0.78
0.034
0.14
0.16.0
0.11.1
10
0.092
0.78
0.034
0.14
0.17.0
0.11.1
10
0.093
0.78
0.034
0.14
0.17.1
0.11.1
10
0.093
0.78
0.034
0.14
0.17.2
0.11.1
10
0.093
0.78
0.034
0.14
0.18.0
0.11.1
10
0.093
0.78
0.034
0.14
0.19.0
0.11.1
10
0.093
0.78
0.034
0.14
0.20.0
1.0.0
10
0.093
0.78
0.034
0.14
0.20.1
1.0.1
10
0.093
0.78
0.034
0.14
0.20.2
1.0.1
10
0.093
0.78
0.034
0.14
0.21.0
1.0.1
10
0.093
0.78
0.035
0.14
0.21.1
1.0.1
10
0.093
0.78
0.035
0.14
100 Resampling Iterations
0.13.4
0.9.0
100
0.092
0.78
0.034
0.14
0.14.2
0.10.0
100
0.092
0.78
0.034
0.14
0.15.0
0.11.1
100
0.092
0.78
0.034
0.14
0.16.0
0.11.1
100
0.092
0.78
0.034
0.14
0.17.0
0.11.1
100
0.093
0.78
0.034
0.14
0.17.1
0.11.1
100
0.093
0.78
0.034
0.14
0.17.2
0.11.1
100
0.093
0.78
0.034
0.14
0.18.0
0.11.1
100
0.093
0.78
0.034
0.14
0.19.0
0.11.1
100
0.093
0.78
0.034
0.14
0.20.0
1.0.0
100
0.093
0.78
0.034
0.14
0.20.1
1.0.1
100
0.093
0.78
0.034
0.14
0.20.2
1.0.1
100
0.093
0.78
0.034
0.14
0.21.0
1.0.1
100
0.093
0.78
0.035
0.14
0.21.1
1.0.1
100
0.093
0.78
0.035
0.14
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.092
0.78
0.034
0.14
0.14.2
0.10.0
1000
0.092
0.78
0.034
0.14
0.15.0
0.11.1
1000
0.092
0.78
0.034
0.14
0.16.0
0.11.1
1000
0.092
0.78
0.034
0.14
0.17.0
0.11.1
1000
0.093
0.78
0.034
0.14
0.17.1
0.11.1
1000
0.093
0.78
0.034
0.14
0.17.2
0.11.1
1000
0.093
0.78
0.034
0.14
0.18.0
0.11.1
1000
0.093
0.78
0.034
0.14
0.19.0
0.11.1
1000
0.093
0.78
0.034
0.14
0.20.0
1.0.0
1000
0.093
0.78
0.034
0.14
0.20.1
1.0.1
1000
0.093
0.78
0.034
0.14
0.20.2
1.0.1
1000
0.093
0.78
0.034
0.14
0.21.0
1.0.1
1000
0.093
0.78
0.035
0.14
0.21.1
1.0.1
1000
0.093
0.78
0.035
0.14
Resampling
resampling =rsmp("subsampling", repeats = evals)
Memory usage of a Resampling object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.16
0.16
0.27
0.27
0.14.2
0.10.0
10
0.16
0.16
0.27
0.27
0.15.0
0.11.1
10
0.16
0.16
0.27
0.27
0.16.0
0.11.1
10
0.16
0.16
0.27
0.27
0.17.0
0.11.1
10
0.16
0.16
0.27
0.27
0.17.1
0.11.1
10
0.16
0.16
0.27
0.27
0.17.2
0.11.1
10
0.16
0.16
0.27
0.27
0.18.0
0.11.1
10
0.16
0.16
0.27
0.27
0.19.0
0.11.1
10
0.16
0.16
0.27
0.27
0.20.0
1.0.0
10
0.064
0.064
0.080
0.080
0.20.1
1.0.1
10
0.064
0.064
0.081
0.081
0.20.2
1.0.1
10
0.064
0.064
0.081
0.081
0.21.0
1.0.1
10
0.065
0.065
0.081
0.081
0.21.1
1.0.1
10
0.065
0.065
0.081
0.081
100 Resampling Iterations
0.13.4
0.9.0
100
0.16
0.16
0.27
0.27
0.14.2
0.10.0
100
0.16
0.16
0.27
0.27
0.15.0
0.11.1
100
0.16
0.16
0.27
0.27
0.16.0
0.11.1
100
0.16
0.16
0.27
0.27
0.17.0
0.11.1
100
0.16
0.16
0.27
0.27
0.17.1
0.11.1
100
0.16
0.16
0.27
0.27
0.17.2
0.11.1
100
0.16
0.16
0.27
0.27
0.18.0
0.11.1
100
0.16
0.16
0.27
0.27
0.19.0
0.11.1
100
0.16
0.16
0.27
0.27
0.20.0
1.0.0
100
0.064
0.064
0.080
0.080
0.20.1
1.0.1
100
0.064
0.064
0.081
0.081
0.20.2
1.0.1
100
0.064
0.064
0.081
0.081
0.21.0
1.0.1
100
0.065
0.065
0.081
0.081
0.21.1
1.0.1
100
0.065
0.065
0.081
0.081
1000 Resampling Iterations
0.13.4
0.9.0
1000
0.16
0.16
0.27
0.27
0.14.2
0.10.0
1000
0.16
0.16
0.27
0.27
0.15.0
0.11.1
1000
0.16
0.16
0.27
0.27
0.16.0
0.11.1
1000
0.16
0.16
0.27
0.27
0.17.0
0.11.1
1000
0.16
0.16
0.27
0.27
0.17.1
0.11.1
1000
0.16
0.16
0.27
0.27
0.17.2
0.11.1
1000
0.16
0.16
0.27
0.27
0.18.0
0.11.1
1000
0.16
0.16
0.27
0.27
0.19.0
0.11.1
1000
0.16
0.16
0.27
0.27
0.20.0
1.0.0
1000
0.064
0.064
0.080
0.080
0.20.1
1.0.1
1000
0.064
0.064
0.081
0.081
0.20.2
1.0.1
1000
0.064
0.064
0.081
0.081
0.21.0
1.0.1
1000
0.065
0.065
0.081
0.081
0.21.1
1.0.1
1000
0.065
0.065
0.081
0.081
resampling$instantiate(task)
Memory usage of a instantiated Resampling object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
0.19
0.47
0.30
0.58
0.14.2
0.10.0
10
0.19
0.47
0.30
0.58
0.15.0
0.11.1
10
0.19
0.47
0.30
0.58
0.16.0
0.11.1
10
0.19
0.47
0.30
0.58
0.17.0
0.11.1
10
0.19
0.47
0.30
0.58
0.17.1
0.11.1
10
0.19
0.47
0.31
0.58
0.17.2
0.11.1
10
0.19
0.47
0.31
0.58
0.18.0
0.11.1
10
0.19
0.47
0.31
0.58
0.19.0
0.11.1
10
0.19
0.47
0.31
0.58
0.20.0
1.0.0
10
0.096
0.37
0.11
0.39
0.20.1
1.0.1
10
0.096
0.37
0.11
0.39
0.20.2
1.0.1
10
0.096
0.37
0.11
0.39
0.21.0
1.0.1
10
0.096
0.37
0.11
0.39
0.21.1
1.0.1
10
0.096
0.37
0.11
0.39
100 Resampling Iterations
0.13.4
0.9.0
100
0.44
2.9
0.55
3.0
0.14.2
0.10.0
100
0.44
2.9
0.55
3.0
0.15.0
0.11.1
100
0.44
2.9
0.55
3.0
0.16.0
0.11.1
100
0.44
2.9
0.55
3.0
0.17.0
0.11.1
100
0.44
2.9
0.55
3.0
0.17.1
0.11.1
100
0.44
2.9
0.55
3.0
0.17.2
0.11.1
100
0.44
2.9
0.55
3.0
0.18.0
0.11.1
100
0.44
2.9
0.55
3.0
0.19.0
0.11.1
100
0.44
2.9
0.55
3.0
0.20.0
1.0.0
100
0.34
2.8
0.36
2.8
0.20.1
1.0.1
100
0.34
2.8
0.36
2.8
0.20.2
1.0.1
100
0.34
2.8
0.36
2.8
0.21.0
1.0.1
100
0.34
2.8
0.36
2.8
0.21.1
1.0.1
100
0.34
2.8
0.36
2.8
1000 Resampling Iterations
0.13.4
0.9.0
1000
2.9
27
3.0
27
0.14.2
0.10.0
1000
2.9
27
3.0
27
0.15.0
0.11.1
1000
2.9
27
3.0
27
0.16.0
0.11.1
1000
2.9
27
3.0
27
0.17.0
0.11.1
1000
2.9
27
3.0
27
0.17.1
0.11.1
1000
2.9
27
3.0
27
0.17.2
0.11.1
1000
2.9
27
3.0
27
0.18.0
0.11.1
1000
2.9
27
3.0
27
0.19.0
0.11.1
1000
2.9
27
3.0
27
0.20.0
1.0.0
1000
2.8
27
2.8
27
0.20.1
1.0.1
1000
2.8
27
2.8
27
0.20.2
1.0.1
1000
2.8
27
2.8
27
0.21.0
1.0.1
1000
2.8
27
2.8
27
0.21.1
1.0.1
1000
2.8
27
2.8
27
Resample Result
rr =resample(task, learner, resampling)
Memory usage of a ResampleResult object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
Memory usage of a ResamplingResult object with models depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
1.7
7.7
2.4
8.5
0.14.2
0.10.0
10
1.7
7.7
2.4
8.5
0.15.0
0.11.1
10
1.7
7.7
2.4
8.5
0.16.0
0.11.1
10
1.7
7.7
2.4
8.5
0.17.0
0.11.1
10
1.7
7.7
2.4
8.5
0.17.1
0.11.1
10
1.6
7.9
2.3
8.4
0.17.2
0.11.1
10
1.6
7.9
2.3
8.4
0.18.0
0.11.1
10
1.6
7.9
2.3
8.4
0.19.0
0.11.1
10
1.6
7.9
2.3
8.4
0.20.0
1.0.0
10
1.5
7.7
1.8
7.9
0.20.1
1.0.1
10
1.5
7.7
1.8
7.9
0.20.2
1.0.1
10
1.5
7.7
1.8
7.9
0.21.0
1.0.1
10
1.5
7.7
1.8
7.9
0.21.1
1.0.1
10
1.5
7.7
1.8
7.9
100 Resampling Iterations
0.13.4
0.9.0
100
8.7
29
12
32
0.14.2
0.10.0
100
8.7
29
12
32
0.15.0
0.11.1
100
8.7
29
12
32
0.16.0
0.11.1
100
8.7
29
12
32
0.17.0
0.11.1
100
8.7
29
12
32
0.17.1
0.11.1
100
8.0
30
11
31
0.17.2
0.11.1
100
8.0
30
11
31
0.18.0
0.11.1
100
8.0
30
11
31
0.19.0
0.11.1
100
8.0
30
11
31
0.20.0
1.0.0
100
7.9
30
10
30
0.20.1
1.0.1
100
7.9
30
10
30
0.20.2
1.0.1
100
7.9
30
10
30
0.21.0
1.0.1
100
7.9
30
10
30
0.21.1
1.0.1
100
7.9
30
10
30
1000 Resampling Iterations
0.13.4
0.9.0
1000
79
240
110
270
0.14.2
0.10.0
1000
79
240
110
270
0.15.0
0.11.1
1000
79
240
110
270
0.16.0
0.11.1
1000
79
240
110
270
0.17.0
0.11.1
1000
79
240
110
270
0.17.1
0.11.1
1000
72
260
96
260
0.17.2
0.11.1
1000
72
260
96
260
0.18.0
0.11.1
1000
72
260
96
260
0.19.0
0.11.1
1000
72
260
96
260
0.20.0
1.0.0
1000
72
260
96
260
0.20.1
1.0.1
1000
72
260
96
260
0.20.2
1.0.1
1000
72
260
96
260
0.21.0
1.0.1
1000
72
260
96
260
0.21.1
1.0.1
1000
72
260
96
260
Benchmark Result
bmr =benchmark(task, learner, resampling)
Memory usage of a BenchmarkResult object depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
Memory usage of a BenchmarkResult object with models depending on the mlr3 version. The size is measured in memory and after calling serialize() and unserialize().
mlr3 Version
paradox Version
Resampling Iterations
In Memory [MB]
In Memory 10,000 [MB]
Serialized [MB]
Serialized 10,000 [MB]
10 Resampling Iterations
0.13.4
0.9.0
10
1.7
7.5
2.5
8.4
0.14.2
0.10.0
10
1.7
7.5
2.5
8.4
0.15.0
0.11.1
10
1.7
7.5
2.5
8.4
0.16.0
0.11.1
10
1.7
7.5
2.5
8.4
0.17.0
0.11.1
10
1.7
7.5
2.5
8.4
0.17.1
0.11.1
10
1.6
7.0
2.3
7.4
0.17.2
0.11.1
10
1.6
7.0
2.3
7.4
0.18.0
0.11.1
10
1.6
7.0
2.3
7.4
0.19.0
0.11.1
10
1.6
7.0
2.3
7.4
0.20.0
1.0.0
10
1.4
6.8
1.7
6.8
0.20.1
1.0.1
10
1.4
6.8
1.7
6.8
0.20.2
1.0.1
10
1.4
6.8
1.7
6.8
0.21.0
1.0.1
10
1.4
6.8
1.7
6.8
0.21.1
1.0.1
10
1.4
6.8
1.7
6.8
100 Resampling Iterations
0.13.4
0.9.0
100
8.5
27
12
30
0.14.2
0.10.0
100
8.5
27
12
30
0.15.0
0.11.1
100
8.5
27
12
30
0.16.0
0.11.1
100
8.5
27
12
30
0.17.0
0.11.1
100
8.5
27
12
30
0.17.1
0.11.1
100
7.1
23
10
23
0.17.2
0.11.1
100
7.1
23
10
23
0.18.0
0.11.1
100
7.1
23
10
23
0.19.0
0.11.1
100
7.1
23
10
23
0.20.0
1.0.0
100
6.9
22
9.6
23
0.20.1
1.0.1
100
6.9
22
9.6
23
0.20.2
1.0.1
100
6.9
22
9.6
23
0.21.0
1.0.1
100
6.9
22
9.7
23
0.21.1
1.0.1
100
6.9
22
9.7
23
1000 Resampling Iterations
0.13.4
0.9.0
1000
76
220
100
240
0.14.2
0.10.0
1000
76
220
100
240
0.15.0
0.11.1
1000
76
220
100
240
0.16.0
0.11.1
1000
76
220
100
240
0.17.0
0.11.1
1000
76
220
100
240
0.17.1
0.11.1
1000
62
180
89
180
0.17.2
0.11.1
1000
62
180
89
180
0.18.0
0.11.1
1000
62
180
89
180
0.19.0
0.11.1
1000
62
180
89
180
0.20.0
1.0.0
1000
62
180
88
180
0.20.1
1.0.1
1000
62
180
88
180
0.20.2
1.0.1
1000
62
180
88
180
0.21.0
1.0.1
1000
62
180
88
180
0.21.1
1.0.1
1000
62
180
88
180
Version Histroy
This section provides an overview of the changes in the mlr3 and paradox packages regarding memory usage and runtime.
mlr3
mlr3 0.21.0
Optimize the runtime of fixing factor levels.
Optimize the runtime of setting row roles.
Optimize the runtime of marshalling.
Optimize the runtime of Task$col_info.
mlr3 0.18.0
Skip unnecessary clone of learner’s state in resample().
mlr3 0.17.1
Remove data_prototype when resampling from learner$state to reduce memory consumption.
Optimize runtime of resample() and benchmark() by reducing the number of hashing operations.
Reduce number of threads used by data.table and BLAS to 1 when running resample() or benchmark() in parallel.
mlr3 0.17.0
Speed up resampling by removing unnecessary calls to packageVersion().
The design of benchmark() can now include parameter settings.
paradox
paradox 1.0.1
Performance improvements.
paradox 1.0.0
Removed Param objects. ParamSet now uses a data.table internally; individual parameters are more like Domain objects now.