Documentation
Entry points to learn about mlr3.
Cheat Sheets
The essential things neatly summarized. Perfectly printed out next to the keyboard or on a second monitor.
Videos
Recorded tutorials and lectures we have given.
Courses/Lectures
Material from teaching at our universities.
Peer-reviewed Articles
A more scientific view on our packages and the packages we depend on.
- Lang et al. (2019): about the base package mlr3
- Binder et al. (2021): building machine learning pipelines with mlr3pipelines
- Sonabend et al. (2021): probabilistic regression with mlr3proba (including survival analysis)
- Bengtsson (2021): the parallelization framework package future we build upon
- Lang (2017): package checkmate for argument checking and defensive programming
- Lang, Bischl, and Surmann (2017): parallelization framework batchtools for high-performance computing clusters, used via future or mlr3batchmark
Tutorial Papers
- Pargent, Schoedel, and Stachl (2023): An Introduction to Machine Learning for Psychologists in R
- Zhao et al. (2024): Tutorial on survival modeling with applications to omics data. Tutorial Website.
References
Bengtsson, Henrik. 2021. “A Unifying Framework for Parallel and Distributed Processing in R Using Futures.” The R Journal 13 (2): 208–27. https://doi.org/10.32614/RJ-2021-048.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl. 2021. “mlr3pipelines - Flexible Machine Learning Pipelines in R.” Journal of Machine Learning Research 22 (184): 1–7. https://jmlr.org/papers/v22/21-0281.html.
Lang, Michel. 2017. “checkmate: Fast Argument Checks for Defensive R Programming.” The R Journal 9 (1): 437–45. https://doi.org/10.32614/RJ-2017-028.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. 2019. “mlr3: A Modern Object-Oriented Machine Learning Framework in R.” Journal of Open Source Software, December. https://doi.org/10.21105/joss.01903.
Lang, Michel, Bernd Bischl, and Dirk Surmann. 2017. “Batchtools: Tools for R to Work on Batch Systems.” The Journal of Open Source Software, no. 10 (February). https://doi.org/10.21105/joss.00135.
Pargent, Florian, Ramona Schoedel, and Clemens Stachl. 2023. “Best Practices in Supervised Machine Learning: A Tutorial for Psychologists.” Advances in Methods and Practices in Psychological Science 6 (3): 25152459231162559. https://doi.org/10.1177/25152459231162559.
Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and Michel Lang. 2021. “mlr3proba: An R Package for Machine Learning in Survival Analysis.” Bioinformatics, February. https://doi.org/10.1093/bioinformatics/btab039.
Zhao, Zhi, John Zobolas, Manuela Zucknick, and Tero Aittokallio. 2024. “Tutorial on survival modeling with applications to omics data.” Bioinformatics, March. https://doi.org/10.1093/BIOINFORMATICS/BTAE132.