Ecosystem

The mlr3 ecosystem is a collection of R packages for machine learning. The base package mlr3 only provides the basic building blocks for machine learning. The extensions packages extent mlr3 with functionality for additional task types, learning algorithms, tuning algorithms, feature selection strategies, visualizations or preprocessing capabilities. The packages are listed bellow with a short description. For more information about the packages, check out their respective homepages.

The dot next to the package name indicates the lifecycle stage.

Graph of Extension Packages

If you use our packages in your research, please cite our articles on mlr3 (Lang et al. 2019), mlr3proba (Sonabend et al. 2021) or mlr3pipelines (Binder et al. 2021). To get the citation information of other packages, call

citation("[package]")

Core

mlr3

mlr3verse

mlr3pipelines

Learners

mlr3learners

mlr3extralearners

mlr3torch

Tuning & Optimization

mlr3tuning

mlr3tuningspaces

mlr3hyperband

mlr3mbo

miesmuschel

bbotk

mlr3automl

Tasks and Datatypes

mlr3spatiotempcv

mlr3cluster

mlr3proba

mlr3spatial

mlr3fda

mlr3fairness

mlr3temporal

Feature Selection

mlr3filters

mlr3fselect

Data

mlr3db

mlr3oml

mlr3data

Analysis

mlr3viz

mlr3benchmark

mlr3inferr

mlr3summary

Other

paradox

mlr3misc

mlr3measures

Parallelization

mlr3batchmark

rush

References

Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl. 2021. mlr3pipelines - Flexible Machine Learning Pipelines in R.” Journal of Machine Learning Research 22 (184): 1–7. https://jmlr.org/papers/v22/21-0281.html.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. 2019. mlr3: A Modern Object-Oriented Machine Learning Framework in R.” Journal of Open Source Software, December. https://doi.org/10.21105/joss.01903.
Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and Michel Lang. 2021. mlr3proba: An R Package for Machine Learning in Survival Analysis.” Bioinformatics, February. https://doi.org/10.1093/bioinformatics/btab039.